Solakhasoside, a Novel Steroidal Saponin from Solanum khasianum

Waraporn Putalun, Li-Jiang Xuan, Hiroyuki Tanaka, and Yukihiro Shoyama*

Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-0054, Japan

Received July 13, 1998

Solakhasoside (1), a novel steroidal saponin, was isolated from the fruit of *Solanum khasianum*. Its structure was determined as (23S,25S)-spirot-5-en-3 β ,17 α ,23-triol-3-O-[α -L-rhamnopyranosyl-(1 \rightarrow 2)] β -D-xylopyranosyl-(1 \rightarrow 3)]- β -D-galactopyranoside] (1) by spectroscopic analysis.

Solanum khasianum C.B. Clarke (Solanaceae) has gained importance because of its high content of solasodine-type glycoalkaloids, which have been found to be useful as starting materials for the production of steroidal hormones, to substitute for diosgenin.^{1,2} In addition to steroidal alkaloid glycosides, such as solamargine,³ solasonine, and khasianine,⁴ steroidal saponins are also abundant in *Solanum* species.⁵ In the course of our screening of solasodine-type glycoalkaloids using a monoclonal antibody (MAb) against solamargine,^{6,7} a steroid saponin containing a novel aglycon was obtained from fruits of *S. khasianum*, and its structure elucidation is reported herein.

After column chromatography over MCI gel, Cosmosil ODS, and silica gel, sequentially, a novel steroidal saponin, solakhasoside (1), was obtained as a colorless amorphous powder from the MeOH extract of the fruits of *S. khasianum*, along with solamargine and solasonine.³

A positive reaction with Liebermann's reagent was observed along with a negative reaction to Dragendorff's reagent, indicating that 1 was a saponin rather than an alkaloid. Furthermore, no reactivity to MAb against solamargine by either competitive ELISA or western blotting supported **1** having a different aglycon moiety from solamargine.^{6,7} FABMS also confirmed the absence of nitrogen. Its molecular formula was identified as C44H69O18 according to negative FABMS and ¹³C NMR spectral data. The molecular ion peak at m/z 885 $[M - H]^-$ and the fragmentation at m/z 753 [M – H – pentose]⁻ and 739 $[M - deoxyhexose - H]^{-}$ indicated the existence of one deoxyhexose and one pentose in a branched sugar moiety. Complete hydrolysis with HCl yielded galactose, rhamnose, and xylose by comparison to the authentic samples on highperformance TLC (HPTLC).

Table 1 shows the ¹H NMR and ¹³C NMR spectral data of **1**. All signals were assigned unequivocally according to

Fable 1.	¹ H NMR	and 13C	NMR	Spectral	Data	foi
Solakhaso	side (1) ^a					

carbon	$\delta_{\rm C}$ (125 MHz, CD ₃ OD)	$\delta_{ m H}$ (500 MHz, CD ₃ OD)
1	38.6	1.09, m; 1.87, m
2	30.8	1.89, m; 1.59, m
3	79.0	3.62, m
4	39.4	2.30, m; 2.45, m
5	142.0	
6	122.5	5.37, d (5.3)
7	33.2	1.55, m; 2.00, m
8	33.4	1.60, m
9	51.5	1.60, m
10	38.0	
11	21.6	1.55, m; 1.62, m
12	32.7	1.30, m; 1.65, m
13	46.2	
14	53.9	1.73, m
15	32.3	1.24, m; 2.02, m
16	90.1	4.04, dd (5.7, 7.8)
17	91.8	
18	17.4	0.85, s
19	10.9	1.04, s
20	44.5	2.41, q (7.3)
21	19.8	1.02, d (7.3)
22	110.5	
23	70.9	3.50, m
24	37.4	1.62, m; 1.66, m
25	24.9	2.02, m
26	67.4	3.36, m; 3.48, m
27	17.4	0.77, d (6.6)
1′	100.8	4.48 d (7.6)
2'	75.8	3.77, dd (7.6, 9.4)
3′	85.2	3.70, m
4'	70.4	4.00, d (3.0)
5'	76.0	3.49, m
6'	62.3	3.70, m
1″	102.3	5.19, d (1.6)
$2^{\prime\prime}$	72.1	3.93, dd (1.6, 3.2)
3″	72.4	3.64, m
4″	74.0	3.38, m
5″	69.8	4.14, dt (9.4, 6.2)
6″	18.0	1.23, d (6.2)
1‴	106.5	4.42, d (7.1)
2‴	74.8	3.28, m
3‴	77.9	3.30, m
4‴	71.1	3.47, m
5‴	66.9	3.20, m; 3.86, dd (5.3, 11.4)

^{*a*} Chemical shifts are reported in ppm. Proton signals are followed by multiplicity and coupling constants (Hz) in parentheses, with assignments determined by $^{1}H^{-1}H$ COSY, HMQC, HMBC, and NOESY measurements.

¹H⁻¹H COSY, HMQC, HMBC, and NOESY analysis. The ¹H NMR spectrum showed diagnostic signals of two tertiary methyl groups (δ 0.85, 1.04, s) and two secondary methyl groups (δ 1.02, d, J = 7.3 Hz; 0.77, d, J = 6.6 Hz) corresponding to the angular methyl groups of a steroid

^{*} To whom correspondence should be addressed. Phone or Fax: 81-92-642-6580. E-mail: shoyama@shoyaku.phar.kyushu-u.ac.jp.

Figure 1. HMBC correlations of solakhasoside.

Figure 2. NOE correlations of solakhasoside.

sapogenin. An olefinic proton at δ 5.37 (d, J = 5.3 Hz) could be attributed to 5,6-unsaturation. In addition, three anomeric hydrogens (δ 4.48, d, J = 7.6 Hz; 4.42, d, J = 7.1 Hz; 5.19, d, J = 1.6 Hz) were consistent with the three monosacharides yielded from acid hydrolysis. These conclusions were supported by the ¹³C NMR spectral data of **1**. In addition to the signals of the angular methyl groups (δ 10.9, 19.8, 17.4 × 2), olefinic carbons (δ 122.5, 142.0), and anomeric carbons (δ 100.8, 102.3, 106.5), a spiroketal carbon (δ 110.5) suggested **1** to be a spirostene triglycoside.

Calculated from the FABMS, the molecular weight of the aglycon moiety was 446, 32 more than that of diosgenin.³ In comparison to diosgenin, there were one more quaternary carbon and one less secondary carbon in the ¹³C NMR spectrum by DEPT measurements. From the HMBC correlations shown in Figure 1, the signal at δ 91.8 could be assigned to C-17 according to its long-range coupled cross peak with that of an angular methyl group ($\delta_{\rm H}$ CH₃-18, 0.85, s; CH₃-21, 1.02, d, J = 7.3 Hz). Owing to this tertiary hydroxyl group, the signals of C-13 (δ 46.2) and C-16 (δ 90.1) were shifted downfield compared with those of diosgenin. In the same way, another hydroxyl group could be placed at C-23 ($\delta_{\rm H}$ 3.50, m; $\delta_{\rm C}$ 70.9) because of the long-range correlation of the resonance with that of the spiroketal carbon at C-22 (δ 110.5).

The stereochemistry of the aglycon moiety was determined by NOESY measurements, as shown in Figure 2. From the angular methyl groups CH_3 -18 (δ 0.85, s) and CH₃-19 (δ 1.04, s), NOE correlations with axial protons on rings A-D confirmed the stereostructure of 1 to be identical to that of diosgenin. The orientation of CH₃-21 ($\delta_{\rm H}$ 1.02, d, J = 7.3 Hz; $\delta_{\rm C}$ 19.8) was assigned as α according to the cross peak between CH₃-18 (δ 0.85, s) and H-20 β (δ 2.41, q, J = 7.3 Hz). Accordingly, C-20 was in the S configuration, the same as diosgenin. The NOE correlation between H-20 β and H-23 (δ 3.50, m) corresponded to the 22*S*,23*S* configuration because of the γ -gauche conformation. The lack of an NOE between H-23 and H-25 suggested an axial CH₃-27 and S configuration of C-25 (δ 24.9). The high-field chemical shift of C-25 also suggested that the configuration at this position was different from that of diosgenin. Consequently, the aglycon of **1** could be determined as (23.S, 25.S)-spirot-5-en-3 β , 17 α , 23-triol.

As described above, the sugar moiety of **1** consisted of galactose, rhamnose, and xylose in a branched chain. With the assumption of D configuration for galactose and xylose and L for rhamnose, the configurations of the anomeric carbons were determined as β , α , and β , respectively, according to the coupling constants of anomeric protons $(J_{1',2'} = 7.6 \text{ Hz}, J_{1'',2''} = 1.6 \text{ Hz}, J_{1'',2''} = 7.1 \text{ Hz})$, along with the chemical shifts of the anomeric carbons (δ C-1', 100.8; C-1^{'''}, 102.3; C-1^{'''}, 106.5). The 3β -hydroxy group was glycosidated by a β -D-galactose unit according to the longrange coupling between the anomeric proton of galactose (δ 4.48, d, J = 7.6 Hz) and C-3 (δ 79.0) measured by HMBC. NOE correlations of H-1' (δ 4.48, d, J = 7.6 Hz) and H-3 α (δ 3.62, m) indicated these two hydrogens were in the γ -gauche conformation. In the same way, β -D-xylose was attached to OH-3', while α -L-rhamnose was connected with OH-2' of galactose according to HMBC correlations between the anomeric protons and the glycosidated carbons, as shown in Figure 1.

In conclusion, **1** was identified as (23.S, 25.S)-spirot-5-en- 3β , 17α , 23-triol-3-O-[α -L-rhamnopyranosyl-($1 \rightarrow 2$)[β -D-xylopyranosyl-($1 \rightarrow 3$)]- β -D-galactopyranoside](**1**). All the signals of carbons and protons were assigned unequivocally as a result of complete spectroscopic analysis. To our knowledge, this is the first isolation of a spirostanol glycoside having a 17α -hydroxyl group.

Experimental Section

General Experimental Procedures. The melting point was measured on a Vanaco micromelting point apparatus. The optical rotation was determined on a JASCO/DIP-4 digital polarimeter. The IR spectrum was obtained on a JASCO FT/IR-410 spectrometer. ¹H and ¹³C NMR, ¹H–¹H COSY, NOE-SY, HMQC, and HMBC were all measured by a Varian Unity-500P spectrometer. The negative FABMS was analyzed by a JEOL JMS-SX102 spectrometer using glycerin as matrix. TLC was carried out on precoated silica gel 60 F₂₅₄ (0.2 mm, Merck). Column chromatography was performed with MCI gel CHP-20P (75–150 μ m, Mitsubishi Chemical Institutes, Ltd., Tokyo, Japan), Cosmosil 75 C₁₈-OPN (42–105 μ m, Macalai Tesque, Inc., Kyoto, Japan), and silica gel 60 (70–230 μ m, Merck). All chemical reagents were standard commercial products of analytical grade.

Plant Material. The fruits of *S. khasianum* was obtained in September 1997 from the herbal garden of the Faculty of Pharmaceutical Sciences, Kyushu University, Japan. A voucher specimen of the plant is deposited (No. 970925) at the herbarium of Faculty of Pharmaceutical Sciences, Kyushu University, Japan.

Extraction and Isolation. Dry fruits of *S. khasianum* (300 g) were extracted with MeOH. After removal of the solvent by evaporation, the combined extract (9 g) was subjected to column chromatography on MCI gel CHP-20P eluted with 40-100% MeOH in a gradient isolation. The 60% MeOH effluent was chromatographed on Cosmosil 75 C₁₈-OPN (40-70% MeOH) and then on a silica gel column (CHCl₃-MeOH-H₂O 7:3:1) to give **1** (4 mg).

Solakhasoside (1) was obtained as a colorless amorphous powder (MeOH): mp 250–252 °C; $[\alpha]^{28}_{\rm D}$ –50.0° (c = 0.1, MeOH); IR (KBr) $\nu_{\rm max}$ 3368, 2934, 1650, 1050-975 cm⁻¹; ¹H NMR and ¹³C NMR, see Table 1; FABMS m/z 885 [M – H]⁻, 753 [M – H – pentose]⁻, 739 [M – deoxyhexose – H]⁻.

Acidic Hydrolysis of 1. 1 was dissolved in 1 M HCl and then heated at 80 °C in a water bath for 2 h. After extraction with CHCl₃, the aqueous residue was evaporated to dryness. Sugar components were identified on TLC by comparison of authentic sugar samples, with *n*-BuOH–AcOH–H₂O (4:1:5, upper layer) as the developing solvent.

References and Notes

- Samanta, S.K.; Ghose, S.K.; Sen, S.; Bhattacharyya, N. K. *Planta Med.* **1983**, *48*, 94–96.
 Yaniv, Z.; Weissenberg, M.; Palevitch, D.; Levy, A. *Planta Med.* **1980**, *42*, 302–306.
 Eggert, H.; Djerassi, C. *Tetrahedron Lett.* **1975**, 3635–3638.
 Mahato, S. B.; Sahu, N. P.; Ganguly, A. N.; Kasai, R.; Tanaka, O. *Phytochemistry* **1980**, *19*, 2017–2020.

- (5) Yahara, S.; Nakamura, T.; Someya, Y.; Matsumoto, T.; Yamashita, T.; Nohara, T. *Phytochemistry* **1996**, *43*, 1319–1323.
 (6) Ishiyama, M.; Shoyama, Y.; Murakami, H.; Shinohara, H. *Cytotechnology* **1996**, *18*, 153–158.
 (7) Tanaka, H.; Putalun, W.; Tsuzaki, C.; Shoyama, Y. *FEBS Lett.* **1997**, *464*, 279–282.

NP980301A